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Non-linear internal gravity waves in a slightly 
stratified atmosphere 

By P. G. D R A Z I N  
University of Bristol 

(Received 29 July 1968) 

Internal gravity waves in a stratified atmosphere of unbounded inviscid in- 
compressible fluid are considered. A class of non-linear waves is found in the 
Boussinesq approximation, whereby the inertial variation of density is neglected 
but the buoyancy is not, by reduction of the equations of motion to ordinary 
differential equations. To find similar non-linear waves when the atmosphere is 
slightly stratified, i.e. when the inertial variation of density is small but not 
entirely negligible, the equations of motion are first expressed in Lagrangian 
variables and derived from a variational principle. The Lagrangian variables are 
transformed to systematize the Boussinesq approximation. Finally, the proper- 
ties of the non-linear waves in a slightly stratified atmosphere are found by 
Whitham’s method of averaging. In  terms of the transformed Lagrangian 
variables, strong non-linearity affects the linearized solution only by adding to 
the pressure a term proportional to the square of the wave amplitude. It follows 
that the amplitude of the waves is inversely proportional to the density of the 
atmosphere, even where the amplitude is not small and the linear approximation 
becomes invalid. 

1. Introduction 
Observations and theory of the upper atmosphere (cf. Hines 1963; Hines & 

Reddy 1967; Booker & Bretherton 1967) suggest that internal gravity waves are 
generated in the troposphere but that most are strongly reflected or absorbed 
before penetrating very high. However, some wave components penetrate to 
the mesosphere or higher, where the density is much less than the density down 
at  the source of the wave. Now the variation of the inertial density (as opposed 
to the weight density) leads to the amplitude of velocity in a wave increasing 
with height z like the inverse square-root of the mean density p ( z )  in the linear 
theory of small wave amplitudes. In  the earth’s atmosphere ii = po exp ( - z / H )  
approximately, where po is the density of air at ground level and the scale height 
H is 8 km or so. So the wave amplitude increases with height like exp (2 /2H) ,  
which is four orders of magnitude at  a height of 100 km. Thus those waves that 
do penetrate high up are heavily amplified, and their non-linear behaviour will 
be important unless they are damped down by the effects of viscosity, turbulence, 
thermal conductivity, or ohmic dissipation first. These diffusive effects also 
increase with height. They have been studied by Pitteway & Hines (1963) and 
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Yanowitch (1967), the former authors having found significant damping above 
heights of the order of magnitude of 100km which vary according to the lengths 
and frequencies of the waves. It seems appropriate now to study the competing 
effect of non-linearity to find which effect modifies the linear wave first. 

We shall take a model atmosphere of unbounded inviscid incompressible fluid 
of variable density under the influence of gravity. We shall also assume that its 
motion is two-dimensional as a convenience, though in fact adaptation of the 
work for three-dimensional flow is straightforward. To study the non-linearity 
we assume that all waves except those within a narrow range of wavelengths and 
frequencies are reflected or absorbed by linear mechanisms discussed in the 
papers to which we have referred, and that the mean velocity of the basic flow 
is uniform where non-linearity is significant. The inertial variation of density is 
assumed to be small, i.e. the scale height of the atmosphere to be much greater 
than the wavelength. These assumptions make the mathematics tractable while 
retaining essential features of the non-linear waves. 

First, the classical linear theory of internal gravity waves is recapitulated. This 
linearization is not uniformly valid where the density tends to zero, as occurs high 
up in the atmosphere, because wave amplitudes grow like the inverse square-root 
of the mean density. 

Whitham’s (1965a, b)  recent application of the method of averaging to non- 
linear dispersive waves was thought to be a likely method of resolving this non- 
uniformity of the linear theory. Accordingly, we seek a special kind of non-linear 
gravity wave in 8 3. A non-linear wave is found in terms of Eulerian variables but 
seems unsuitable for generalization by Whitham’s method. 

This leads to the adoption of Lagrangian variables in $4.  They have the 
advantages of simplicity and of enabling the equations of motion to be derived 
from a variational principle. As a final preparation for averaging the non-linear 
wave and finding how it varies slowly where the density varies little in a wave- 
length, the Lagrangian dependent variables are modified. This clarifies the 
Boussinesq approximation whereby the buoyancy is of order one but the inertial 
variation of density is small. 

In  $ 5  the method of averaging gives all waves that behave locally like the 
special non-linear wave found in $ 3. It is shown that, to the first approximation in 
slow variation of density with height, the energy of any special non-linear wave 
is propagated as if the wave were linear. This description of the change of the 
amplitude holds for the modified Lagrangian variables, but not the Lagrangian 
variables or Eulerian variables. 

2. Linear theory 

summarized as follows. The Euler equations of motion of inviscid fluid are 
The classical linear theory of internal gravity waves (Rayleigh 1883) may be 

p(au/at + (u. grad) u} = - gradp - gpk, (2.1) 

where u is the Eulerian velocity, p the density and p the pressure of the fluid at  
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position r at time t and where the gravitational acceleration is g. The equation of 
incompressibility is 

@/at + (u . grad) p = 0, (2 .2)  
so the equation of continuity gives 

divu = 0. 

Consider small perturbations of fluid at  rest in hydrostatic equilibrium with 
density p ( z )  and pressure p(z).  Then p z + g P  = 0, where the subscript denotes 
differentiation with respect to height. The linearized equations of motion now 
give pau/at = -grad ( p  - p )  - g(p - p )  k, 

q p  - p ) p  + Waji laz  = 0,  

div u = 0. 

The perturbations may be resolved into independent wave components. Further, 
by rotation of the axes about the vertical, it is sufficient to consider each wave 
as a motion in the (x, 2)-plane. Thus we put 

u.,w,p-F, p - P  = Re{a(z), B(z) ,  p^(z)exp[i(kx-wt)]} 
respectively, where k is a real wave-number and w a real frequency. We assume 

< 0 so that the mean state is stable. Now elimination of 8, p^, $2 gives 

4jzz + - k28 + k2N2W-28 = 0, (2 .4)  

where the inverse scale height P(z) = -pJP  and the Brunt-Vaisala frequency 
N ( z )  = +Il(sP). 

When, for example, p = po exp ( -@z) with constant 8, the solution 

8 = e exp {$/3z + i(kx + mz - wt)], (2.5) 

where e is any small complex constant and the vertical wave-number m satisfies 
the frequency relation 

w2 = gpk2/ (  k2 + m2 + $p2). 
It can be seen how the amplitude of the wave grows like p-4. So the linearization 
cannot be uniformly valid for small e as z -++a. In  fact iteration of this 
solution gives 

ikp 
2 0  ( 3k2 + 3m2 - p2) - 2ipm 

(k2 + m2 -p2) - ipm eexp{+/3z+i (kx+mz-ot ) ) - -  

rn 
x e2exp{/3z+2i(kx+mz-wt)}+ O(~exp[@])~}. (2 .7)  

on a suitable choice of complementary function at each stage of the iteration (or, 
equivalently, on a suitable redefinition of E). This solution seems to break down 
where E exp (ipz) 2 1, i.e. at and above heights z w - 2(log e)//3. 

In  the Boussinesq approximation /3 is neglected although gp.  is not. More 
formally, one may take the limit as p/m + 0 for fixed N 2 / W 2 ,  mlk, e. Thus, in the 
above example, the solution becomes 

n=3 

i2 = eexp {i(lcx + mz - wt)] (2 .8)  
28-2 
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and the frequency 

The non-uniformity of the linearization is removed (though it occurs for any 
given P > 0, however small) and there are linear waves with phase velocity 

w = {gPk2/(k2 + m2))*. (2 .9)  

v = w(k2 + m2)--1 (k ,  m) (2.10) 

aw aw 
ak am 

and group velocity 
V = - i + - k  

= wmk-l(ka+m2)-1(m, - k ) .  ( 2 . 1 1 )  

(2 .12)  

This gives the vertical component of the group velocity 

W = - 02(N2  - w2)?t/kN2 sgn m. 

These results can be extended by the JWKB approximation when N varies 
slowly with height (Bretherton 1966). The energy density of the waves varies 
like NZ(N2- w2)-4, and reflexion occurs at a level where w = N(z).  

3. A non-linear wave 
Whitham (1965a, b )  has recently developed a method of finding the properties 

of non-linear dispersive waves by generalizing the method of averaging of 
ordinary differential equations. The breakdown of the linearization of internal 
gravity waves where p is small occurs very slowly in the Boussinesq approxima- 
tion and so seems suitable for treatment by Whitham's method. Accordingly 
let us follow it, first looking for a single non-linear wave of the assumed form 

p = p ( z )  ( 1  +R(O)}, 
for some periodic functions u, w, R, P of 8 = kx+ mz - wt. Then the equations of 
motion give 

and therefore 

u = ~ ( 8 ) ~  w = w(@, p = T ( X )  + p ( ~ )  P ( @ ,  

kue + mwe = 0 

ku+mw = const = 0, say; (3.1) 

(4 - 0) Re = P( 1 + R) w, (3.2) 

( Q - u ) ( l + R ) u e  =-kPe, (3.3) 

( Q - w ) ( l + R ) w e  = -mPB+PP-gR. (3.4) 
These equations can have no solution except in regions where P(a )  is constant. 
There we may deduce u = Q/k-mwlk, 

R = Cexp(-/~wd8)-1, P 
a - w  

P = B + Crnk-2(R - w )  

for any constants B, C where 
wee+g/3k2(k2+m2)--1(Q-w)-2w = /3ws{m(k2+m2)-1-w/(Q-w)) (3.5) 

and /3Bkz = gk2( C - 1 )  + B( 12 - W )  ( k2 + m2) W ,  I e=o. 
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It can be seen that the complete solution follows easily once w is determined 
from (3.5). To solve this equation, first note that we may choose a new normaliza- 
tion of 8 without loss of generality so that 

gpk2 = (k2+m2) (Q-w)2. 

Then Wee+ w = pw~{~(k2+m’)-’-w/(Q-W)}.  (3.6) 

Analysis of this equation in the phase plane of (w, We) shows that there is only 
one singularity, an unstable spiral point at the origin, and that each trajectory 
comes from the origin and goes to infinity. Therefore there are no periodic 
solutions in general. However, when ,8 = 0, 

w=Acos(e+7)  

for arbitrary constant amplitude A and phase 7. When 0 < p 1 we anticipate 
that A ,  7 change slowly with 8 but that the solution retains the above form. This 
process whereby A ,  7 may change by order one when 8 increases by order p-’ is 
well known in the theory of non-linear oscillations (cf. Bogoliubov & Mitropolsky 
1961). An approximation to the solution for small /3 can be found by the method 
of averaging, which may be applied as follows. Equation (3.6) can be written as 

exactly. To first order in ,8 we average this equation over the ‘period’ 2n of the 
slowly varying solution A cos (8 + 7) and thereby pick up the cumulative effects 
of the small right-hand side. This gives 

i.e. dA2/d8 = pm(k2 + m2)-lA2. 
Therefore A = Aoexp{&@m(k2+m2)-18}. 

A similar argument shows that r,? is constant to this order of approximation. 
Therefore w = A,exp {&,8m(k2 + m2)-18} cos (0 + 7,). 
As 8 increases A wil l  finally become so large that this approximation breaks down. 

At this point one could put p = 0 to get the periodic solution w = A cos (8 + 7) 
and hence get periodic u, P, R. This complete periodic solution could be genera- 
lized for small /3 (not necessarily constant) by averaging conservation relations 
that follow exactly from the partial differential equations of motion. In  this way 
one might find partial differential equations to show how the ‘constants’ 
A ,  B,  C, Q vary slowly when pis small. However, I felt that it would be technically 
easier to reformulate the whole problem in Lagrangian variables. Unfamiliarity 
with Lagrangian variables seems to be more than offset by the reduction of the 
dependent variables from four to three, by the ease of getting a variational 
principle (which is important in Whitham’s (1965b) later work), and by the 
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simplicity of handling the Boussinesq approximation. When this work was in 
progress, Seliger & Whitham (1968) found a variational principle for Euler 
variables in the Clebsch representation. The representation shares some of the 
advantages and disadvantages of Lagrangian co-ordinates, and the two sets of 
co-ordinates offer an interesting comparison. Accordingly, let us start again in 
Lagrangian variables. 

4. Lagrangian formulation 
Lagrangian co-ordinates may be chosen so that the Cartesian co-ordinates of 

a fluid particle are ( x ,  z )  at time t and ( x ,  z )  = (a, c) at an initial time, t = to say. 
Then continuity and incompressibility gives the Jacobian 

4x9 2) -- 
d(a,c) - 'a 

This classical theory is conveniently described in the notation of Eckart (1960), 
whereby ti = a, c,  t ; xm = x ,  z , p  ; x y  = dxm/dti (i, m = 1,2,3),  the summation con- 
vention of repeated indices is used, 

dF(xm, xy ,  ti) aF aF aF 
da axm ax? ta aa 

denotes partial differentiation of any function F for constant c,  t ,  etc., and 
aF/axm, aF/axy denote formal partial derivatives. Thus we identify (xt, zl)  as the 
Eulerian velocity, and we can rewrite the equation of incompressibility as 

= ---xz + --x? +- 

xaZc-xcz, = 1. (4.1) 

The equations of motion of inviscid fluid, when gravity acts in the negative 

xtrxc + (Zit + 9) ZC + P c h  = 0. (4.3) 

For incompressible fluid, p = p(a, c )  is independent of t .  Let us suppose that 
the fluid is stratified with p = p(c) at time to and therefore p = p(c) for all time. 

Following Eckart ( 1960), consider the Lagrangian function 

L = T - V ,  
where the kinetic energy density 

(4.4) 

and the potential energy density 

Now define the integral 
I = /I:j::/t':Ldtdcda 

and take 61 = 0 to give I an extremum over the class of well-behaved functions 
x ,  z, p which have prescribed values at the end points of integration. This 
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variational principle gives the Euler-Lagrange equations for p ,  x, 2 which are, 
respectively (4.1), 

and (4.9) 

Equations (4.8), (4.9) are in fact the x- and z-equations of momentum in Lagran- 
gian co-ordinates, and with (4.1) they are equivalent to equations (4.1)-(4.3). 
Thus the variational principle implies the equations of motion. 

Conservation laws of the form div F = dFi/dti = 0 play an important part in 
Whitham’s ( 1 9 6 5 ~ )  method of averaging. Sometimes they can be derived by 
inspection. Alternatively the property (cf. Eckart 1960) that 

d a  aL -+- = 0, dti ati 

where the energy-momentum tensor 
aL 
ax? 

4 = xy- - La,” 

gives a conservation relation for each co-ordinate ti  that L does not explicitly 
depend upon. Here L depends explicitly on neither t nor a. Amore systematic way 
t o  seek conservation relations is to find Lie groups under which I is invariant and 
then to use Noether’s theorem (cf. Gelfand & Fomin 1963, pp. 81-2, 176-8). In  
our case I is invariant under the three groups of translations t* = t + 01, a* = a + a, 
x* = x* + u for arbitrary parameter u, and the corresponding conservation rela- 
tions turn out to be the conservation of energy (equivalent to dald t i  = 0 ) ,  
,dL;ldti = 0 and the conservation of x-momentum respectively. Also the transla- 
tion p* = p + u changes L by only the divergence of a vector and hence does not 
affect 61 ; this gives the conservation of mass. 

Reverting to our problem of internal gravity waves, we may put 

into equations (4.1)-(4.3) and linearize for small perturbations X ,  2, P. This 
gives the wave solution of § 2, on identifying X,, 2, with the Eulerian variables 
u, w and a, c with x, z ,  respectively, in this linear approximation. 

Similarly, t,he non-linear solution of 3 3 is recovered if we suppose X = X ( @ ) ,  
2 = Z(@, P = P(O), where 0 = ka+mc-wt, and substitute into equations (4.1)- 
(4.3) without approximation. The next step might seem to be Whitham’s method 
of averaging. However, trial of this method has shown that informal use of the 
Boussinesq approximation, crudely treating P(c) as small when not multiplied 
by g ,  is liable to lead to errors. So first we shall transform the Lagrangian co- 
ordinates in order to unambiguously sort out the relative magnitudes of terms 
when P is small. 

This transformation, namely 

6 = pt(x-a), 5 E p*(z-c), w E p-t 
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serves at once to represent the displacement of a particle from its basic position 
(a, c), to give waves whose average kinetic energy varies slowly with height, and 
to systematize the Boussinesq approximation. It follows that 

x = a+p-t& 2 = c+p-*<, p = Po-g  p ( c ' ) d c ' - g p * t + p b ,  (4.11) JI 
and by routine calculus and algebra that 

- g  C'P(C') dc'-gS+gP-%.Y,}, 1: 
(4.12) where T* = * ( g + Y f )  

and v* = BSPC 1 + P-%) c2 - w{5, + Q + P--%ZCc - t c  6) 
+ *PC + *Bp-t( tu5 - t su ,> .  (4.13) 

The divergence terms in L make no contribution to 61, so the equations of 
motion in [, 6, w are given by the new variational principle &I* = 0, with 

With this new variational principle the Euler-Lagrange equations for w, $, 

t u  + Q + P-%u Q - t c  Q) = - I-PC + * P P - m u  - t u  5), 
are respectively 

(4.14) 

t ~ ~ + ~ u - 9 P P - ~ S ~ u + P - ~ ~ ~ u ~ c - ~ c ~ u ~  = -I-PP-*(%<+W<u), (4.15) 

!&++c+gPC(1 +p-*t,) +P-*(fl,..,-tcw,) =*P~+*PP-"t%+t,w). (4.16). 

These exact equations of motion can alternatively be derived directly from (4.1), 
(4.8), (4.9) with (4.11). 

Equations (4.14)-(4.16) make explicit the Boussinesq approximation. The 
orders of magnitude of the terms are apparent as + 0 for fixed gp  $: 0. This is 
in contrast to the derivation of (2.4) and (3.5) for which one can only put /3 = 0, 
g,4 + 0 after elimination of all the dependent variables but w. Here the Bous- 
sinesq approximation comes simply from neglecting the right-hand sides of 
equations (4.14)-(4.16). Alternatively the Lagrangian L* may be replaced by 
Lo = T* - V, in the variational principle, where 

Ki = *gPP+P-%) 5 2 - - ~ t u + f c + P - ~ ( ~ u a c - ~ c c u ) } .  (4.17) 

In  preparation for averaging we shall now get some conservation relations 
from equations (4.14)-(4.16) without approximation. The integral I* is invariant, 
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under translations of t ,  a and 6. Therefore Noether’s theorem gives the exact 
conservation relations 

d d 
at da - v* + V*)  + - ( - tgPP-+EL2 + W{tl + P-%Cc- fl,!3 

(4.18) 
d 

++Bp-~(ttC-tCt)}) +-,(m{Ct+P-~(Eu,Q-%5u),))) = 0, 

% (tU& + b C J  + &$ - T* + W C 2 -  a(Q + +/m> + 

(P%) + &j ( - 9 g K 2  + W{P * + tr, + W C N  - 

d d d 

d d d 

(WCJ = 0,  (4.19) 

(4.20) 

respectively. These equations are equivalent to (4.1)-(4.3). Also L* is altered by 
only a divergence under a translation of w, and so 81* is invariant under transla- 
tion of w. Thus Noether’s theorem gives conservation of volume of incompressible 

( W d )  = 0 

Also dLZildti + aL*/ac = 0 gives 

d d 
at - ( t c  tt + Q 6)  + & { t c  w - W P - %  c2 + * P P - W t c  5 - t 5 c ) l  

d av* 
+-(-T*+&P(l dc + P - + t u ) C 2 - w { t u + + ~ C + ~ P P - ~ ( t ~ 5 - t 5 u ) > )  = x. (4.22) 

There are an infinity of conservation relations that can be found by trial. Of 
these, we shall need only the three following : 

(dfdt,) ( t 4 t  + 55ft + gPC2 + SPP-+C(tu 5- E L )  + w(Eu + Q + 8/35) 
+ ~ ~ [ E + P - ~ ( t 5 c - t c S ) I ~ u +  {w[5+P-+(tu5-t5u)l}c) = 0. (4.23) 

5. Slowly varying waves 
The non-linear wave solution w = A cos 8 of the Euler equations (3.1)-(3.4) 

can be easily found in terms of the present variables. Put /3 = 0 for fixed g p  p 0, 
i.e. neglect the right-hand sides of equations (4.14)-(4.16), and look for a solution 
for which the physical variables ( , 6 ,  w are periodic functions of 6 alone, where 8 
is now any linear function of a, c and t .  This gives, as before, 

5 = ACOSO, (5.1) 

= p+D-8c8,1Acos8, (5.2) 

w = p-*B - 8,8; 6i2A sin 8 + &gpp-tA2 cos 26, (5.3) 

G = g{(e:+e,z)e!e,-2-gp) = 0. (5.4) 

for new arbitrary constants A ,  B, D, provided that 

Note that p*D, p-+B have been chosen as the average values oft ,  w respectively 
over their period 2n in 8. 



442 P. G. Drazin 

When p = 0 the quantities Am = A ,  B, D (m = 1,2 ,3)  and Oi are constants. 
When p is small and positive they are assumed to vary slowly and so can be found 
by Whitham's method of averaging. This method is too complicated for there 
to be any rigorous theory yet, so it may be helpful to bear in mind that the basic 
idea here is to generalize for partial differential equations the method of averaging 
used on the ordinary differential equation (3.6). 

We have already derived exactly from the equations of motion relations of the 
form 

where Pi, H are functions of order one as P + 0 for fixed constant qp + 0. One 
can eliminate [ m  in favour of A m ,  8 to put these relations in the form 

This is without any approximation, because it may be regarded as a change of 
dependent variables. To find how the 'constants' A", 6, vary, the relations above 
are averaged over a 'period' 27r of the wave (5.1)-(5.4). The justification of this 
approximation and of averaging a relation of the above form rather than any 
equation of motion is discussed further by Whitham (1965a) and Luke (1966). 
This averaging gives approximate relations of the form 

where the average of any function f ( B )  is defined so that 

for fixed Am, 6,. In  all Whitham's examples, he found that increasing indefinitely 
the number of conservation relations to average led to redundant information, 
there being a basic independent set of averaged equations (5.5) for each problem. 
Later Whitham (1965b) found that these could be equivalently derived by finding 
an  exact variational principle for the equations of motion, by averaging the 
Lagrangian as a function of 6 and the 'constants', and then by using the Euler- 
Lagrange equations for the averaged Lagrangian. 

Putting the local solution (5.1)-(5.3) into the conservation relation (4.18) and 
averaging over a 'period' 2n in 6,  one finds 

where E E 4A2. The right-hand side is of order of magnitude p times slowly 
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varying quantities, i.e. of order b2, and therefore negligible to the present order 
of approximation. Therefore 

Similarly, the average of (4.19) gives 

of (4.22) gives 

= :9PcE7 (5 .8)  
on neglect of p2, with the assumption that /3, = 0(p2); and of (4.23) gives 

The average of (4.20) gives 

(5.10) 

and of (4.21) gives 
_ -  

= 0, (5.11) 

Equations (5.9) imply that EG is constant, and therefore that CT = 0 globally 
on neglect of O(B2). 

as well as locally for the wave (5.1)-(5.4). Now 

identically, where the group velocity 

But G is zero, and depends explicitly upon c but not a or t .  Therefore 

Then equation (5.6) gives 
d b  d(Kb) &(v,d) +- = 0, 

dc -+- dt da 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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where (5.16) 

Similarly equations (5.7), (5.8) give (5.15). Thus the six equations (5.6)-(5.9) are 
compatible, being equivalent to G = 0 and (5.15). 

To apply Whitham's (1965b) alternative method, one notes that 
- 

T" = geq(e:+e:)e;%, v* = g(gp+$peceqe;iD) E ,  

so the averaged Lagrangian 
- 
L* = (G - ;pee;  e,-lD) E. (5.17) 

The Euler-Lagrange equation for A gives aZ1*/aA = 0,  i.e. 

G = $pe,eqe;w. (5.18) 

The Euler-Lagrange equation for 0 gives 

in agreement with (5.15) on neglect of p2. L* is a linear function of D and inde- 
pendent of D,, so there is no extremum of due to variations of D. This seems 
to imply that D is zero to the present order of approximation. Indeed, this can 
be imposed at  the outset by a translation of the origin of the horizontal co-ordinate 
a. Also the averaged Lagrangian is inherently unable to give any variation of B 
because the pressure-like variable w appears as a Lagrangian multiplier in L". 
This is associated with invariance of the action integral I* under translation 
of w. These aspects of invariance of I* in the formulation with Lagrangian co- 
ordinates seem to be new in applications of Whitham's method of averaging and 
to deserve deeper analysis. 

In  any event both approaches give the variation of A according to equation 
(5.15), which does not involve B or D. To the present order of approximation 
for small /3, non-linearity gives only the term in A2 to (5.3).  Equation (5.15) is 
the same as if the wave were linear (Whitham 19653, Q 10). Its characteristics 
coincide, and the characteristic velocity is the group velocity V. In  the simplest 
case, the amplitude, wavelengths and frequency of the two-dimensional wave 
vary slowly with height only, i.e. 

A = A@) ,  FY = k ( c ) a + m ( c ) c - ~ ( c ) t ,  

where k,, m,, w, are small. Then 0, = m + (k,a +m,c - w,t) = m, e,, = k,, 
S,, = -wc. Therefore equation (5.15) gives 

and thence mo2k-4A2 = const. (5.20) 
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This is the adiabatic invariant as k, m, w change slowly with height such that 
G = 0 everywhere. It can be seen that 

A2 = const x ~ k 3 ( N 2 -  ~ 2 ) t  (5.21) 

and thus that A becomes large at any level where w = N(x).  Therefore the present 
non-linear approximation breaks down locally, but reflexions may be expected 
as in linear theory (Bretherton 1966). 

6. Discussion 
In  order to make the problem of non-linear internal gravity waves tractable, 

we have been somewhat restrictive. In  addition to the limitations of the model 
atmosphere already mentioned, inviscid incompressible fluid, no mean flow, no 
magnetic field, it should be remembered that only slow variation of a single wave 
component was considered. Non-linear interactions of waves of significantly 
different lengths or frequencies were ignored. 

However, the strongly non-linear behaviour of a single wave in a slightly 
stratified atmosphere has been revealed. The linear theory is valid only where the 
amplitude A < p4/Oc, but if p is small the non-linear theory is valid elsewhere, 
even high up, where the density is small. If the transformed Lagrangian variables 
<, c, a are used, non-linearity affects the solution only in w, the pressure-like 
variable, for which a term in the square of A is added. Otherwise the non-linear 
waves behave like groups of linear waves. This means that z = G +p-&A cos 6, etc. 
even when p-*A is not small. Therefore waves are reflected near levels where 
w = N and the increase of amplitude of the displacement of a fluid particle 
increases with height like p-4, even where the linear theory breaks down. 

This non-linearity cannot be described so simply in the Eulerian variables, 
because the velocity components u = xt = p-4& and w = zt = p-*ct inextricably 
involve the Lagrangian co-ordinate c in p(c) where z - c is not small. This seems 
to justify working with the less familiar Lagrangian variables for this particular 
non-linear wave. 

Finally, it should be emphasized that this theory gives the behaviour of 
internal gravity waves even where the density is not exponentially stratified. If 
the density does become exponentially small, as in the earth’s atmosphere, then 
the amplitude of the waves becomes large and the solution will be as described 
above in the non-linear regime. Eventually a sinusoidal wave solution of the 
ordinary differential equation (3.6) will be no longer approximately a solution 
where A M 1/p, and the whole waves solution will be invalid. However, the 
theory is equally valid in an ocean in which the density tends to a non-zero 
constant. Then the frequency relation gives waves with vanishing frequency O1 
or vertical wavelength 2n/Oc in the region of uniform density. 

I thank Professor C. 0. Hines for reawakening my interest in internal gravity 
waves. 



446 P. G .  Drazin 

REFERENCES 

B O G O L I ~ O V ,  N. N. & MITROPOLSKY, Y.  A. 1961 Aqmptotic Methods in the Theory of 
Non-Linear Oscillations. Delhi : Hindustan Publishing Co. 

BOOKER, J. R. & BRETHERTON, F. P. 1967 J. Fluid Mech. 27, 513. 
BRETHERTON, F. P. 1966 Quart. J. Roy. Meteor. SOC. 92, 466. 
ECKART, C. 1960 Phys. Fluids, 3, 421. 
GELFAND, I. M. & FOD~IN, S. V. 1963 Calculus of Variations. Englewood Cliffs, N.J.: 

HINES, C. 0. 1963 Quart. J .  Roy. Meteor. SOC. 89, 1. 
HINES, C. 0. & REDDY, C. A. 1967 J .  Geophys. Res. 72, 1015. 
LUKE, J. C. 1966 Proc. Roy. SOC. A 292, 403. 
PITTEWAY, M. L. V. & HINES, C. 0. 1963 Canadian J .  Phys. 41, 1935. 
RAYLEIGH, J. W. S. 1883 Proc. Lond. Math. Soc. 14, 170. 
SELIGER, R. L. & WHITHAM, G. B. 1968 Proc. Roy. SOC. A 305, 1. 
WHITHAM, G. B. 1966a Proc. Roy. SOC. A 283, 238. 
WEUTHAM, G. B. 1965b J .  Fluid Mech. 22, 273. 
YANOWITCH, M. 1967 J .  Fluid Mech. 29, 209. 

Prentice Hall. 


